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ABSTRACT

A new three—-dimensional numerical cloud model has been developed for the
general purpose of studying convective phenomena. The model utilizes a time
splitting integration procedure in the numerical solution of the compressible
nonhydrostatic primitive equations. Turbulence closure is achieved by a
conventional first—order diagnostic approximation. Open lateral boundaries
are incorporated which minimize wave reflection and which do not induce
domain-wide mass trends. Microphysical processes are governed by prognostic
equations for potential temperature water vapor, cloud droplets, ice crystals,
rain, snow, and hail. Microphysical interactions are computed by numerous
Orville-type parameterizations. A diagnostic surface boundary layer is
parameterized assuming Monin-Obukhov similarity theory. The governing
equation set is approximated on a staggered three-dimensional grid with
quadratic-conservative central space differencing. Time differencing is
approximated by the second-order Adams-Bashforth method. The vertical grid
spacing may be either linear or stretched. The model domain may translate
along with a convective cell, even at variable speeds. In storm splitting
cases, the domain translates with the convective cell having cyclonic rotation
and allows the other cell(s) to pass through the lateral boundary without
detrimental consequences.

Potential applications of the model range from the simulation of shallow
cumulus to supercell cumulonimbus, including such convective phenomena as

downbursts, tornadoes, gust fronts, and hailstorms.
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1. TINTRODUCTION

Three-dimensional, convective cloud models have now advanced to a stage
where they can be directly compared to observed data fields. This has been
made possible by the current evolution of high-speed and large in-core memory
vector computers. The earliest three-dimensional cloud models were developed
by Steiner (1973), Miller and Pearce (1974), Pastushkov (1975), Schlesinger
(1975, 1978), Lipps (1977), Klemp and Wilhelmson (1978a), Cotton and Tripoli
(1978), and Clark (1979). These pioneering models were limited by computer
restraints, and were run with relatively crude grids and simple
microphysics. Nevertheless, they were able to produce much information on the
dynamics of buoyant convection within vertically-sheared environments.
Refinements in these models have continued to progress (e.g., Yau, 1980; Cho
and Clark, 1981; Wilhelmson and Chen, 1982; Tripoli and Cotton, 1982; Yau and
Michaud, 1982; Schlesinger, 1984a, 1984b; Smolarkiewicz and Clark, 1985); but
only a few, so far, have attempted to verify their model simulations with
detailed observed data sets. Of the 3-D models, only Cotton et al. (1982)
have included parameterizations of ice-phase microphysics. They found that
its inclusion moderately affected the dynamics of the simulated clouds. The
significance of including the 1ce phase has also been shown in other studies
with one- and two-dimensional models. For example, Ogura and Takahashi (1971)
have found that the exclusion of the ice-phase resulted in a considerable
change in the evolution of the downdraft. Willoughby et al. (1984) and Lord
et al. (1984) using a 2-D axisymmetric model, have found that inclusion of
ice-phase microphysics resulted in dramatic differences in a hurricane
simulation; one important finding was that the locations of mesoscale

downdrafts were controlled by falling ice particles. Ice-phase microphysics



cannot be casually neglected from model developments. It may have an
important impact, especially with regard to simulations of downburst phenomena
and deep tropospheric convection.

The purpose of this report is to present the development of a new three-
dimensional numerical model. The model, the Terminal Area Simulation System
(TASS), has a meteorological framework and is formulated for the general
purpose of studying the physical-dynamical character of convective clouds and
storms. The TASS model is capable of realistic simulations of convective
clouds ranging from nonprecipitating cumulus to intense, long-lasting,
supercell hailstorms. Its application, however, is not limited to convective
clouds; the model may be applied to many other microscale and meso—gamma scale
phenomena. In fact, considerable care has been taken in the formulation, so
that the model is capable of valid simulations of tornadic and severe
downburst phenomena. One major use of the model, so far, has been in the
study of downburst-related wind shear and its impact on aviation safety (e.g.,
Chuang et al., 1984; Proctor, 1985a, 1985b). The model is currently being
used to examine the three—dimensional structure of downbursts and to provide
realistic data for real-time flight simulations.

A brief description of the TASS model is as follows. The model utilizes
a nonhydrostatic, compressible and unsteady set of governing equations which
are solved on a three-dimensional staggered grid. The model divides water
into six bulk categories each governed by a prognostic equation. The six
categories are: 1) water vapor, 2) ice crystals, 3) cloud droplets, 4) rain,
5) snow, and 6) hail/graupel. The former three categories represent
nonprecipitating forms of water, while the latter three represent
precipitating forms of water. The hail/graupel category may consist of either

hail or graupel. Note that all three phases of water (i.e., vapor, liquid,



and solid) are included. Parameterization of the numerous microphysical
interactions (that result in exchanges of water between the six categories)
are similar to those given in Lin et al. (1983), and Rutledge and Hobbs
(1983). As for treating turbulence mixing, the TASS model adopts the subgrid
closure approach (e.g., Deardorff, 1970; 1972; 1973). That is, scales of
turbulence larger than the assumed grid size are simulated explicitly within
the flow field; while scales of turbulence less than the grid size are
parameterized from a closure approximation. The subgrid closure model
currently in use is a conventional, first-order, diagnostic approximation.
TASS also incorporates surface stresses which are dependent upon
stratification, ground roughness, and local winds. Numerical stability and
conservation in the solution of the governing equations relies on an
appropriate choice of numerics and boundary conditions. The TASS model uses
quadratic-conservative space differencing and incorporates a modified Orlanski
radiation boundary scheme. Application of the radiation boundary condition to
the open lateral boundaries allows the outward propagation of waves with
minimal reflection. Also, the procedure for applying the radiation boundary
conditions is free of domain-wide mass trends. Other features of TASS are
1) the option of a vertical grid-size stretching, 2) movable mesh with time
varying translation speed, 3) a numerical filter and sponge applied below the
top boundary, and 4) specification of an initial environment from a sounding
that is either observed or predicted from a regional model simulation. Output
from TASS includes three-dimensional fields of wind velocity, rain, snow,
hail, cloud water (cloud droplets and ice crystals), radar reflectivity,
temperature, and pressure (see Fig. 1).

Details of the model formulation are found in Chapters 2-6. In Chapter 2

the basic model assumptions are listed. 1In Chapter 3 the model framework,



governing equations, boundary conditions, and turbulence closure are
discussed. The cloud microphysics, including the development of the
microphysical parameterizations, are described in detail in Chapter 4. The
initial and reference conditions are discussed in Chapter 5. This section
includes the formulation for the initial perturbation fields which are
necessary in order to trigger convective development. In Chapter 6 the
numerical procedure is described. This section includes the formulatiom for
the variable-speed, grid-translation algorithm, as well as the details of the
finite-difference equations, grid, and numerical stability criteria. Also
included in Chapter 6 are some important numerical details in the computation
of the cloud microphysics and a brief discussion of the model code.

Several test simulations with the TASS model are described in Chapter 7.
These test cases assume simplified atmospheric conditioms, and are useful in
demonstrating the validity of the model coding and formulation. A more severe
test of the model performance is discussed in a second report, in which TASS

simulated results are compared and evaluated against observed data sets.
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2. BASIC MODEL ASSUMPTIONS

The TASS model has been developed for the general purpose of studying
convective phenomena with time scales of several hours or less. The primary

model assumptions are:

1) an equation set which is valid for subsonic and high-Reynold's number

turbulent flow;

2) Reynolds' averaging of equation set is roughly equal to grid size;

3) thermal radiation is neglected;

4) the first grid point above the ground lies within the surface stress

layer;

5) the ground is flat with a homogeneous surface roughness;

6) only a passive interaction with the large-—scale environment -—

disturbances can propagate out of the limited model domain, but not

into the domain;

7) the initial environment is horizontally homogeneous and in steady

balance —— convection is initiated by adding a velocity and/or

temperature perturbation;

8) supersaturation with respect to liquid water is not allowed —-



condensation occurs at a rate which maintains saturation;

9) subgrid-scale condensation is neglected;

10) hydrometeors are classified into five bulk categories and

microphysical interactions are parameterized;

11) rain, snow, and hail/graupel assume inverse-exponential size

distributions;

12) cloud ice crystals have a monodispersive size distribution;

13) falling hydrometeors instantaneously achieve their terminal velocity

and have no horizontal slip relative to air motion; and

14) electrical effects (e.g., drop charging) are ignored.



3. DYNAMIC MODEL

Model Framework

The model framework assigns a reference environment which is a function

of only the height coordinate and is in hydrostatic balance. The dependent

variables may be expanded in terms of the reference environment as (symbols

are listed in the Appendix A)

u(x,y,z,t) = UO(Z) + u'(x,y,2z,t),

v(x,¥,2,t) = V (2) + v'(x,¥,2,t),
P(x,5,2,t) = P (2) + p(x,y,2,t),
0(x,y,z,t) = 8 _(z) + 8'(x,y,2,t),
p(x,y,2z,t) = p_(2) + p'(x,¥,2,t),

QV(X)Y:z’t) = QVO(Z) + Q;(X,Y,Z,t),

where x, y, and z are respectively the Cartesian coordinate in the west to
east, south to north, and vertical direction; t is the time coordinate; u and
v are respectively the west to east and south to north velocity component; P
is pressure, © is potential temperature; p is the air density, Q, 1is the

mixing ratio for vapor; U,, V., Pgs Py Bo, Qvo are the reference components,

and u', v', p, p', 6' and Q; are the deviations from their respective



reference quantities. The values of the reference environment may be taken
from an actual hydrostatically-balanced environmental sounding.

The reference environment also represents the initial model
environment. Details of the initial and reference environment formulations

are discussed in section 5.

Governing Equations

The model incorporates the unsteady primitive equations in nonhydrostatic
and compressible form. As in Cotton and Tripoli (1978), dimensional pressure
and potential temperature (along with moisture substances) are chosen as the
prognostic thermodynamic variables. Closure of the equation set is obtained
by diagnosing density and temperature.

In deriving the following equations the hydrometeors are assumed to
instantaneously achieve their respective terminal velocities; and thus, the
total mass per unit volume of atmosphere is equal to the sum of the masses
(per unit volume of atmosphere) of dry alr, water vapor, cloud droplets, cloud
ice crystals, rain, snow, and hail (see Appendix B). This assumption leads to

an equation of state having the form

P
p=gr (1 -0.61Q +Qp.), (1)

where Qp = Qep + Q¢+ Qq + Qg + Q- Here, R is the gas constant for dry
air; T is the air temperature; and Qr 1s the total of the water substance
which 1s a sum of the mixing ratios of cloud droplets, Qcp» 1ce crystals, Q1c)H
rain, Qg, snow, Qgns and hail, Qy-

The governing equations consist of eleven prognostic equations. They are



expressed in a form that is consistent with the fully-elastic mass—continuity

equation (i.e., dp/dt = - p V +V) as follows.

Three equations for momentum

The equations for momentum are expressed in Cartesian tensor notation as

du du,u du
i H 2dp i3
+ — = - + u + g(H-1) &

ot o bxi bxj i bxj 13
) ) *
T u

1 ij i
- 1)
2 Qj up eijk + o bxj + (bt . (2)

The Einstein summation convention is used for vector quantities; uy is the ith
velocity component (i,j,k index from 1 to 3, uyy = u, uy = v, uz3 = W, X1 = X,

X9 = Y, and xq = z), € is the alternating unit tensor, Q. is the jth

3

component of the Earth's angular velocity, g is the gravitational

13k

acceleration, and & is the Kromecker delta. Eq. (2) is in nonBoussinesq form
as derived in Proctor (1982). The advection terms, represented by the first
two terms on the right-hand-side of Eq. (2), are expressed in this expanded
form in order that quadratic-conservative numerical formulations can be
appliedl.

Coriolis effects are retained even though Klemp and Wilhelmson (1978b)
found that their inclusion produced only minor changes in cumulonimbus
simulations. An approximate formulation of the coriolis effect follows that
of Tripoli and Cotton (1982). They assume that the initial fields are in

geostrophic balance, and they neglect the horizontal variations of the initial

lThe advection term can also be expressed as [du ,u.p /9x, + u. du.p /9x.1/p
(e.g. Tripoli and Cotton, 1980). This form, as weHl %s the f&%mihféreéged(in
Eq. (2) were tested in an axisymmetric simulation of a firestorm; even under
these severe conditions results from both of the formulations were nearly

identical.

10



pressure and temperature fields that are due to coriolis effects. These
assumptions lead to the formulation in Eq. (2) in which the coriolis
acceleration only affects the perturbation velocity.

The next-to-last term in Eq. (2) is due to Reynolds' averaging. The
Reynolds' stresses, Tij, are a result of subgrid~scale fluctuations of
velocity. Details of the subgrid formulation are discussed later in this
section.

The last term in Eq. (2) is an external forcing term which is added in
order to maintain a steady initial state. Details of this procedure will be
discussed in section 5.

The density ratio term H represents the ratio of the reference density of
the environment to the local density. It may be diagnosed (see Proctor, 1982)

as

H=p /o= (9/0,) (2 /0™ 1+ 0.61 (o -0,) - oyl (32)

where 1 = Cp/Cv —— the ratio of specific heats of air at constant pressure
and constant volume. The exponentiated term in Eq. (3a) can be expanded,
resulting in an expression which is more computationally efficient, yet still
valid for most atmospheric problems (where p <K P,). This alternate

expression, which is used in almost all of the model experiments, is

H = [9/90 - p/nPo] [1.0 + 0.61 (QV-QVO) - QT]. (3b)

11



Prognostic equation for pressure deviation

The prognostic equation for pressure deviation is

du, du,p du
ap i_ .4 i
5e T " ax. - " 3w, T Pax, T PoBU N
3 j h|
dqQ dQ
np 46 T _ _v -
+5 3 - P I3 61 =1 (1 - .61Q_+ Qp)

1 3s(P)
* o o, (4)

where S(P) is due to subgrid-scale fluctuations. The derivation of this

equation can be found in Appendix B.

Thermodynamic equation

The thermodynamic energy equation is written for potential temperature
which is conserved in dry-adiabatic processes. The prognostic equation for

potential temperature is

oo _ 2% 2,1 ese)
ot bxj bxj po 6xj
9 20"
+ E;T-[Lv SV + Lf Sf + LS SS] + (sz- (5)

where L,, Lg, and Ly are respectively the latent heats of vaporization,
fusion, and sublimation; Sy, S¢ and Sg represent the rate of phase conversions
of water in units of mass of water per unit of time per unit mass of dry

air. This basic formulation of the thermodynamic equation was derived by Das

(1969) and has been found to have reasonable accuracy (e.g., Wilhelmson,

1977).
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Six equations for water substance

A coupled set of
distribution of water

substances. Each vari

six prognostic continuity equations govern the
vapor, and liquid phase and solid phase water

able for water substance is expressed in terms of a

mixing ratio (mass of water substance per mass of dry air) which is conserved

in the absence of turbulence mixing, phase changes, and microphysical

interactions.

The prognostic equations for water vapor, nonprecipitating cloud

droplets, nonprecipitating cloud ice crystals, rain, snow, and hail are,

regpectively,
2Q ou,Q
v o_ j'v
ot ox +Q
ann ~ aujQCD .
dt bxj
0Qqq PuQre +
ot ox
]
0Q du ,Q
R:= j°R
dt axj +Q
PQgy _ BuyQgy N
ot ox
h|
bQH ) f)ujQH 4
ot bxj

The last term in Eqgs.

EEJ.+ 1 aS(QV) + S + (ESK * (6)
v axj Po bxj vap at ’
du 3S(Q )
j.1 CD
Qo E'*Eaxj * Seps (7>
dou 0S(Q,.)
.1 1C
QICEG'*- aaxj * Sie (8)
Myl MR 1 3@ 9
R axj o 6xj 3j Py bxj R?
du BQeyWap 05(Qqy)
j .1 SN"sPo SN
Uuse t s 6, + x—+ S, (10)
SN Xy P, bxj 33 axj SN
du 3Q W0 3s8(Q,)
j. 1 H"H H
. Ej-+ g __axj 53j + __bxj + Sy (11)

(6) - (11) is a source term resulting from microphysical

interactions between each of the bulk categories. 1In the absence of

evaporation from the ground, continuity of water substances requires:
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s = 0.

S +s, . +S__+ SR + SSN + 0

vap ch IC

Since Egs. (9) - (11) govern precipitating categories of water substance,
a fall-out or slip term is included. In these terms the bulk terminal
velocities for rain, snow and haill are represented by ﬁk, WS , and Wﬁ,
respectively. The terminal velocities are by definition positive and are

directed vertically downward. Details of their formulation and the modeled

microphysics will be discussed in section 4.

Treatment of Subgrid Processes

1f the dependent variables in the governing equations are treated as
averages over the grid volumes, the equations themselves should be treated as
similarly averaged, giving rise to residual terms. In the presence of
turbulence motion these terms represent subgrid Reynolds stresses in the
momentum equation and subgrid eddy transport in the remaining prognostic
equations. This approach to turbulence closure allows the resolvable eddies
to be modeled explicitly, while the influence of the subgrid eddies (the
effects of eddies approximately equal to or less than the grid size) are
“parameterized” (e.g-, Deardorff, 1970; 1972; 1973; Sommaria, 1976). An

overview of subgrid scale modeling can be found in Herring (1979).

Subgrid Reynolds stresses

The subgrid Reynolds stress tensor according to lst-order closure theory

(e.g., Clark, 1979) is

T3y Po ¥u Piy
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in which the deformation tensor Dij is defined

D =3ﬁ+.a_u;-j.—_2-.ai6
ij 3xj axi 3 axk ij

The subgrid eddy-viscosity for momentum is

Ry = @ )? Ioerl (1-r)%", (12)

where ¢ 1s an empirical constant, A is the subgrid-turbulence length scale,
IDEF| is the absolute magnitude of the local rate of deformation, and Re is
the Richardson flux number. The averaging length scale is related to the grid

size as
1
A= (2ax » 20y » 2a2)Y3, (13)

Studies by Clark et al. (1977,1979) and Love and Leslie (1977) suggest that
the averaging length should be related to twice the grid length rather than
the grid length as in Deardorff (1978). The magnitude of the local rate of

deformation is

0.5
aui Bui Bui)]

axj (ax

= 1 . = (- 2
| DEF| /2Dij Dyy= I 2/3 9" + ¢

+
ij j 9%y

where the divergence is defined as

Q
[
=

(14)

©
]
™
(%)
d
P

The local Richardson flux number is related to the local Richardson number
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as

Re = (K /KRy for - 100 < R, £ 0.99,

and the local Richardson number is defined (e.g., Duran and Klemp, 1983) as

-
1 36 P _
Taz t 0.6l 37 (Q, ~ Q)
-9
57 Qg ¥ Qg + Q) for Qo + Q¢ £ 0,

|DEF|2 L 98, 3
'fa—z’_"' 0.61 3z Q, + Qp + Q¢ ~ o’

-9
3z Qcp * Q¢ t Q)

-9 .
37 QT Qe * Q) for Qup + Qe > O3

where the equivalent potential temperature is defined

0, = 8 exp [(LSQv + LfQIC)/CpT] .

An arbitrary upper bound of 0.99 is enforced on Ry in order to guarantee a
minimal amount of diffusion. An arbitrarily lower bound of -100 is also
assumed.

In the above formulation, the subgrid eddy mixing is affected by the
local shears through the deformation term, and is modified by the
stratification through the Richardson flux number. When the stratification is
neutral (Rg¢ = 0), Eq. (12) reduces to the Smagorinsky turbulence model which
has been applied with great practical success in planetary boundary layer

studies (e.g., Deardorff, 1970; 1972). Clark et al. (1977, 1979) has
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examined several closure assumptions in simulations of homogeneous isotropic
turbulence and has found that the Smagorinsky model adequately accounted for
the transfer turbulence energy to the subgrid scales. They also have found
that the optimal dissipation of grid-scale turbulence energy occurred when

a = 0.186. This value falls within the range of other experimental and
theoretical values, and should remain invariant of grid size (at least as long
as A is within the inertial subrange). The impact of unequal grid sizes on

this turbulence closure scheme is unknown.

Subgrid eddy transport

Also from lst-order closure theory, the subgrid covariances in Eqs. (5) -

(11) are approximated as

S(q) = p K, bqlbxj (15)
where q = 8, Qv’ QCD’ Qs Q> QSN’ or Qq.- The subgrid eddy-mixing
coefficient for heat, Kr, is assumed for all scalar variables (except
pressure). Its value is taken from theoretical considerations by Deardorff
(1973) to be

KT = 2.5 KM for z > Az.

Similar to Eq. (15) the subgrid transport for pressure deviation is

assumed as

S(p) = 0 Ky Bp/ox,.
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Boundary Conditioms

Surface boundary

The choice of surface boundary conditions can have an important influence
in convective cloud simulations. For instance, Schlesinger (1982) found that
a significant impact on simulated storm development resulted, when he changed
his model surface winds from the customary free-slip to semi-slip. The change
to the semi-slip boundary condition was made so as to take into effect the
retarding effect of the earth's surface. Schlesinger found that the
orientation of the flanking line and the dominance of the right moving
convective cell (after storm splitting) were strongly affected by the choice
of surface boundary conditions. The ground boundary layer also was found to
play a crucial role in the axisymmetric simulations of a tornado by Proctor
(1982). His model simulations demonstrated that surface convergence induced
by a parent vortex, and the subsequent release of latent heat of condensationm,
may lead to the formation of a tornado. His simulations also demonstrated
that frictional convergence was responsible for the extreme upward velocities
in a tornado at a few tens of meters above the ground. These studies and
others have demonstrated that friction at the earth's surface can exert some
influence on convective systems. Friction at the earth's surface may alter
the depth, speed, and orientation of storm-produced surface outflows, and may
also influence the propagation and intensity of convective storms.

In the absence of detailed surface-layer data below convective storms, it
is difficult to formulate and test surface boundary conditions for cloud
models. In this model as in Sommeria (1976), a constant flux or stress layer
{s assumed to extend from the ground to the first grid point above the surface

(at height h = Az/2). Conditions within this layer are parameterized using the
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nondimensional shear and temperature gradient functions, as deduced from field
observations by Businger et al. (1971). The model surface formulation
described below is completely diagnostic; it does not include a moisture or

temperature budget for the ground.

At z = h:

0.5

¢
M
ren Ri) ’

2
Ky = (kh)* [DEF| (1 - 3

and

Kp = Ky ¢M/¢H,

where k is von Karman's constant (0.4), and ¢M and ¢H are respectively the
nondimensional wind shear and temperature gradient. Within the surface layer
(0 <z < h), relationships for u, v, 8, and KM are based on Monin-Obukhov
similarity theory and are derived in Appendix C. The mean velocity gradients

in the surface layer are
0 ov
G = u(h)/h,  and &> = v(h)/h.

The mean temperature gradient in the surface layer is

2 2
20 To(l + .61 Qvo) [u(h) + v(h)"] GH h
G = oM
0z 2 2 'L
g h GM

where GH and GM are universal functions that can be deduced from field

observations and L is the Monin-Obukhov length. The mean eddy-viscosity for
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momentum within the surface layer is

<KM> = KM(h) ¢M/GM.

The values for ¢M and ¢H are determined from measurements of Businger et al.

(1971), i.e.,

unstable (h/L) < O stable (h/L) > O
- _ -0.25 -

¢M = [1 - 15 (h/L)] ¢M 1 + 4.7 (h/L)

§y = 0.74 [1 -9 (h/1)]79°° b, = 0.74 + &7 (W/L).

Likewise, the universal functions are

Gy = n (h/zg5) = Yy

Gy = 0.74 [2n (h/zy) = VYyl,

where

- 4.7 (h/L) for (h/L) > O,
_ 0.352 (n/L)3 - 1.43 (/L)

Yy = - 2.22 (h/L) for -2 < (h/L) < 0;
- 6.35 (h/L) for (h/L) > O,
0.74/¢, = 1 for - 0.08 < (h/L) £ O,

by =

0.1326 - 2.341 (h/L) 3 1.278 (h/1)?
~ 0.2879 (h/L) for — 2 < (h/L) < - 0.08

In the formulas for WM and WH, approximate curve fits have been substituted
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for the unstable cases (h/L < 0). [The third-order approximations for ¢ was
m

devised by Schultz (1979).]
The Monin-Obukhov length is determined from the local Richardson number

(at z = h) as

Ri/0.95 for R1 <o,

Ri/(l -5R for 0 < R1 < 0.1674,

1)
38.227 - 463.71 R1 + 1442.2 R

al ]

for 0.1674 S_Ri < 0.1875,

N N

308.49 - 3323.9 Ri + 9010.6 R, for 0.1875 S-Ri £ 0.2.
The first two approximations are from Haltiner and Williams (1980), the latter

two are curve fits determined from the relationship
R, = (z/L) ¢ /0 2.
i H "M

The eddy diffusfon for temperature and moisture substance, Ky, 1is set
equal to zero at the surface. Hence, the subgrid fluxes of vapor,
temperature, etc., are not allowed through the ground surface. The effect of
evaporation from a rain-soaked ground is parameterized by adding a source term
(at the lowest grid level above the ground) in each the prognostic vapor and
thermodynamic equations. The formulation for ground evaporation is presented
in section 4.

Other boundary conditions at the ground surface are:

2Q
w = 0, az_V= 0,
aQCD = 0 d ?QIC =0
dz » an dz )
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The surface boundary condition for pressure is consistent with the vertical

equation of momentum at z = o; i.e.,

o

ot

3p _ - 3

L= (p /H) [(H - 1) g+ 5=
3

Values at the ground for precipitating moisture substance (rain, snow, and

hail) are determined by applying upstream time-differencing to the following

equations:

0Qpy .. 9%y
At = wR dz ?

%y _ . %Qgy
ot S 3z 4
3Q _ 09Q

5t - "u 3z

hence, precipitating hydrometeors fall through the surface boundary at a rate

determined by their mean terminal velocity.

Open lateral boundaries

Computational constraints dictate a requirement for lateral boundaries
even though no physical counterpart exist. Open lateral boundaries should
allow the mean flow and superimposed wave modes to pass freely and
unobstructed. They should also be formulated such that they guarantee
conservation; i.e., they should not artifically create mass, water vapor,
etc. The proper formulation of the lateral boundaries is essential for
accurate simulations.

An increasingly popular boundary condition for nonperiodic but open flow
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boundary conditions is the Sommerfeld radiation condition:

20 , ¢ 26 _

3t + C 3¢ 0, (16)
where ¢ is any prognostic variable, r is the space coordinate perpendicular
to the boundary, and C is phase velocity normal to the boundary. Orlanski

(1976) determined C locally from (16) at an interior grid point then applied

it to the radiation boundary condition at the following time step; hence he

assumed
N N-1
Cp= Cp-1 >

where N represents the time level and b-1 represents first interfor point
adjacent to the boundary point. Thus, he assumed that the phase speed at the
boundary is equal to phase speed at the adjacent interior point from the
previous time step. Orlanski applied this procedure in several cases of two-
dimensional flow which was governed by a prognostic vorticity equation. He
found this formulation to work quite well; allowing disturbances to propagate
through the boundary with minimal reflection and distortion of the interior
solution.

In nonhydrostatic primitive equation models the procedure used by Klemp
and Wilhelmson (1978a), Clark (1979), and Tripoli and Cotton (1980) is to
apply the radiation boundary condition to the velocity component normal to the
boundary, and to apply one or more of the following conditions to the
remaining dependent variables along the boundary: 1) use upwind differencing
if the normal velocity 1s directed outward, 2) set the variable equal to a

fixed reference value, and/or 3) specify the normal gradient equal to zero.
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The phase velocity in (1) is either specified as in Klemp and Wilhelmson, or
determined locally as in Orlanski (1976). However, these formulations often
led to runaway circulations and unrealistic trends in the domain-wide mass
fields (Clark, 1979; Tripoli and Cotton, 1980, 1982). A new procedure for
applying the radiation boundary condition in primitive equation models has
been formulated by Proctor (1985a). This procedure includes the "Orlanski
radiation boundary condition”; that is Eq. (16) with the phase speed
extrapolated from the interior as in Orlanski (1976); however, it is in a form
consistent with the Adams-Bashforth time differencing scheme. The procedure,
as outlined below, differs from the conventional approach and is essentially
free of mass trends and run—-away circulations. In fact, a periodic adjustment
to the domain-wide pressure field [as in Klemp and Wilhelmson (1978a)] is
never needed throughout any of the simulations.
At each of the four lateral boundaries, the boundary conditions are as
follows:
(1) The radiation boundary condition is applied to the pressure deviation
and the components of velocity that are tangent to the boundary
[e.g., Eq. (16) 1is applied to u and w at the north and south
boundaries];
(2) The vertical velocity is set equal to zero at its boundary point
whenever the flow normal to the boundary is directed into the domain;
(3) The horizontal velocity and pressure can relax to their reference
values at boundary points where the radiation boundary condition is
applied; i.e.,
du

5{ = E(Uo- u)
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(4)

(5)

is applied to u at the north and south boundaries;

dv
a’ E(Vo - v)

is applied to v at the east and west boundaries; and

is applied to p at all four boundaries when the phase speed
determined by Eq. (16) is directed into the domain. [The value for
e 1s 1072 71 )

The component of velocity normal to the boundary is determined from
continuity by assuming that the normal gradient of three-dimensional
divergence vanishes; thus at the north and south boundaries

ov du ow
_— =—(6;{-+'a—z) +@

(
SO ARY b

b-1"

likewise, on the east-west boundaries

du, _ ow

G, =~ Gyt 520, ¥ Pp-17
where Qb—l is the divergence evaluated at the first interior point;
The boundary values for the remaining variables are determined from
upstream time differencing if the flow normal to the boundary is
directed outward; otherwise if the flow is inward, they are set to

their reference values; i.e., 6 = 9. Q= Q4 Qp = O,

QICS 0, QR= 0, QSN= 0, QH= 0.
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In addition to the boundary conditions, a second-order filter is applied
to the u, v, w, 6, and QV fields along the three columns of grid points
ad jacent to each lateral boundary. Application of the filter is necessary in
order to eliminate 2Ax and 4Ax waves. The Orlanski radiation boundary
condition is suspected of not being able to handle the fast changing phase
speeds of the numerically-generated high frequency waves; thus making
filtering next to the boundaries necessary.

The above formulation for the lateral boundaries allows the outward
propagation of disturbances with minimal reflection. But, of course, 1t
cannot account for the influence and inward propagation of disturbances, that

(in the real world) may lie outside of the model domain.

Top boundary

At the top boundary the vertical velocity is set equal to zero and the
potential temperature is held fixed to its reference value. These conditions
are not unappropriate if the top boundary is chosen at a reasonably high
altitude. However, an artifact of this choice is the reflection of upward
propagating gravity waves. To reduce wave reflection, a "filter and sponge”
(Perkey and Kreitzberg, 1976) are applied within the four rows below the top
boundary.

In the application of the sponge the local rate terms for u, v, w, p, and
0 are multiplied by a weighting coefficient WB’ which is a function of the

level beneath the top boundary. The weighting coefficlents for w and 6 are:

0.0 for I=o5>5

0.4 for I= b1
WB(I) 0.7 for I = b2

0.9 for I= b3

where b refers to the grid points for w or 6 at the top boundary level;
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b-1, the first level beneath the boundary; etc. For u, v, and P a porous

sponge condition is assumed and the coefficients are given as:

0.7 for I = b-1

WB(I) =
0.9 for I =5%-2.

The values of u, v, and p at the top boundary are assigned derivative boundary
conditions as follows: for horizontal velocity a free slip boundary condition

is assumed; that is,

for the pressure deviation, its vertical gradient is assumed to vanish at the
top boundary, i.e.,

3.,

9z

Similarly at the top boundary, the subgrid eddy viscosity and water
substance variables are

BKM ) BKT

9z 3z

=0,

and

Nep _ 3 _ gy _ %y -
9z 9z dz dz oz ‘

The mixing ratio for water vapor, on the other hand, is specified to its

reference value as Qv = Qo
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4, CLOUD MICROPHYSICS

The cloud hydrometeors are subdivided into five bulk categories: 1)
cloud droplets, 2) ice crystals, 3) rain, 4) snow, and 5) hail. The
hydrometeors comprising the cloud droplets and ice crystal categories are
assumed to be small and nonprecipitating. The ice crystals are assumed to
have a monodispersive size distribution. The remaining categories represent
precipitating hydrometeors and are assumed to have a continuous inverse
exponential size distribution. All hydrometeors except ice crystals are
assumed spherical. The parameterization of the cloud microphysics is similar
to those described by Orville and Kopp (1977), Lin et al. (1983) and Rutledge
and Hobbs (1983).

The size distribution for rain is taken as (Marshall and Palner, 1948)

N(DR) = NOR exp (- DR/AR), (17)
where N(DR) is the number of raindrops per unit diameter per unit volume, Dp
is the raindrop diameter, AR is the inverse of the slope of the rain
distribution, and NOR is the intercept. Similarly the size distribution for

snow is assumed as (Gunn and Marshall, 1958)

N(Dg) = N

og &XP (- DS/AS); (18)

and the distribution for hail or graupel is taken as (Federer and Waldvogel,

1975)
N(DH) = NOH exp (- DH/AH). (19)
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The slope factors can be determined from the above distributions as (e.g., Li

et al., 1983)

- 0.25
Ag = (P Qp/mNyp 5,) , (20)
0.
A = (o Qg /g 84372, (21)
0.25

n

where 6w, GS’ and 6H are respectively the densities of water, snow, and hail.

In the microphysical parameterizations the intercept for rain is assumed
constant and the intercepts for snow and hail are functions of height only.
The values for the intercepts are derived from measured size distributions.
For rain, observations during a thunderstorm by Sekhon and Srivastava (1971)

lead to a value of NOR = 2.5 x 107 m-4. This value is larger than that found

by Marshall and Palmer (1948) for widespread rain; but, is nearly identical to

the NOR for hurricane rainfall reported by Lord et al. (1984). The intercept
for snow is determined from data reported in Houze et al. (1979) as

6 -4
NOS = 5.5 x 10 exp [- 0.088 (To - TM)] m ,

where To 1s the temperature of the reference environment (degrees Kelvin) and
Ty is the melting-point temperature (273.16 K). The intercept for hail is
taken as

4 m-4 for To T

_ 4 x 10 LTy
OH 4

4 x 10" exp[- 0.088 (To - TM)] for To > TM.
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The hail intercept at altitudes above the melting level 1is assumed constant;
the value of 4 x 10A m-k was deduced by Orville and Kopp (1977) from data
reported in Federer and Waldvogel (1975). The decrease in NOH with
temperature at altitudes below the melting level is an attempt to crudely
approximate the decrease in NOH that is due to the more favorable melting of
the smaller hail sizes. For example, in a two-dimensional simulation of a
hailstorm by Kopp et al. (1983), the hail intercept was found to be about an
order of magnitude lower at the ground than above the melting level.

The hail category is represented by two different types of spherical ice
particles: moderate density graupel and hail. As in Cotton et al. (1982),
only one type is allowed at a given grid point and time. Hail is assumed
present only when the computed mean graupel diameter exceeds 5 mm. The two
types of particles differ in that the assumed density for graupel particles is
lower. Only hail particles are allowed wet growth; otherwise, the
parameterization of the two types of particles are identical. 1In the
following text both types of particles will be referred to as hail.

The density of hail? is

900 kg o 1f D.>5x10 " m
5y =

450 kg m > if D < 5x 10" m,

where the mass welghted mean diameter of the graupel particle 1is

— 0.25
D; = 4 le, QH/450 T Noy! [m].

2The value for the density of the hail particles is taken from Vittori and di
Caporiacco (1959); the assumed value for moderate density graupel is derived
from data in Pruppacher and Klett (1978).
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The values of the other densities are assumed as 1000 kg m-3 for liquid

water and 100 kg m_3 for snow (e.g., Rutledge and Hobbs, 1983).

Terminal Velocities

Rain

The mass-welghted mean terminal velocity for rain can be determined as
(Rutledge and Hobbs, 1983)
fo N(DR) M (DR) WR (DR) dDR

W, = - , (23)
SUN(DR) M (D) 4D

where WR(DR) is the terminal velocity of a raindrop having diameter Dp and
mass M(DR) = 7 5w DR3/6. Rutledge and Hobbs' (1983) polynomial fit to the
experiment data of Gunn and Kunzer (1949) yields (all units MKS)

6

p2 4+ 7.55 x 10 D3. (24a)

WR(DR) = -~ 0.267 + 5150 DR - 1.0225 x 10 R R

Also from the data of Gunn and Kinzer, an alternative approximation for

terminal velocity is (Liu and Orville, 1969)

0.8
Wp(Dp) = 843 D °°. (24b)

Eq. (24b) is less exact than (24a) but leads to a more simple integration of

the microphysical equations. Substitution of Eqs. (24a) and (17) into (23)

ylelds a mass-weighted mean terminal velocity for rain as
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W= [~ 0.267 + 2.06 x 10% Ag = 2.045 x 107 ARZ

R
+9.06 x 10° AR3] (1.2 /po)o'4 (25a)

(for AR > 1.3132 x 10-5 m). Substitution of Egqs. (24b) and (17) into (23)
yields

= 0.8

WR = 843 T'(4.8) AR /6 (25b)
Values for the mean mass-weighted terminal velocity are computed from Eq.
(25a) since it 1s more precise and computationally efficient. A correction
factor is included in (25a) in order to account for the change in fallspeed
with air density (Foote and Toit, 1969). Egs. (24b) and (25b) are used only

in the development of the microphysical parameterizations.

Snow

The terminal velocity of snow, in nature, varies slowly with increasing
particle size; more significant variances in fallspeed are due to snow type
(e.g., rimed dendrites; graupel like snow). The fallspeed assumed in the
model is deduced from the data of Locatelli and Hobbs (1974) and Jiusto and
Bosworth (1971). The terminal velocity for snow is assumed to vary only with

air density, and is given by (where units are in the MKS system)

W = 1.1 (1.2/p°)°'5. (26)

Hail

From McDonald (1960), the terminal velocity of a hailstone having

diameter DH is
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0.
Wy(Dy) = [4 g 6y Dg/3 p_ Cp] 3, (27)

The drag coefficient for hallstones is assumed constant with a value of

CD = 0.45 (Macklin and Ludlam, 1961). The mean mass~welghted terminal

velocity for hail is determined by substituting Eqs. (19) and (27) into an

expression similar to (23) and integrating over all particle sizes; giving,
0.5

ey OOS
WH = 1.09375 [4n g 6H/3 poCD] AH . (28)

Parameterization of Microphysical Production Terms

For most of the microphysical interactions, the production terms are
parameterized by integrating over the assumed size spectrum. For example, 1f
the mass growth of a single raindrop due to a particular interaction is dM/de,
then the rate of production of QR is given by

dqQ ©
R 1 dM
PRODUCTION RATE I = E—-I Ic N(DR) dDR.
o o

A description of the microphysical production terms which appear in Egs.

(5) = (11) follows below. The production terms have units of per second;

unless otherwise stated all units are expressed in the MKS system.

Condensation and evaporation of cloud droplets

Condensation of water vapor into cloud drops 1s assumed to occur at rate
which maintains saturation with respect to water vapor. Likewise, evaporation
of cloud droplets is assumed to occur at a rate such that either saturation is

maintained or all available cloud droplets are depleted. From Proctor (1982),
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A if A +Q. >0,
PCDWV1 = v D

l>|r-a
-t

—QCD if Kv + QCD <0

where At is the time step and Kv is defined:
A= (Q ~-Q )/[1+Q L2/C R Tz].
v v sV sv v. p Vv

[A derivation of the above equation is in Appendix D.] The saturation mixing

ratio for vapor3 is determined from

Q, = e, [Q, + €1/2, (30)

where, ¢ 1is the ratio of gas constants (e = RV/R = 0.622), and ey is the

saturation vapor pressure with respect to water.

Mean cloud droplet radius

A mean radius for cloud droplets is needed in several microphysical
parameterizations. It is determined by assuming that the number of cloud
droplets per unit volume (nCD) remains constant; thus, the average mass of a

cloud droplet is

Moy = Qcp Po/fcpe (31)

and the mean radius of a cloud droplet is

3The customary definition for saturation mixing ratio is Q__ = esy E/[p-esv]
(e.g., Berry et al., 1945). However a reexamination shows that

Q, = Pey/Pq = esY E/(p-e¥) = e . [Q, + €]/p. In firestorm simulations the
customary definition was found to give negative saturation mixing ratios in
areas of high temperature, where .y exceeded p.
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T = [3 Qg p /4 6, nCD]1/3. (32)

The value assumed for Nep can be estimated from the condensation nuclei
spectra, or if not available, climatology of the area being modeled. For
example, typical values in extreme continental areas are . 109 m_3; while in
contrast, values in maritime regions can be as low as ~ 107 m-3- Note that
for a given concentration of cloud droplet water, Eq. (32) implies that the
mean cloud droplet radii are larger in maritime clouds than in continental

clouds.

Cloud ice crystals

The treatment of ice crystals follows that of Rutledge and Hobbs
(1983). The ice crystals are assumed to be hexagonal plates and to have a
monodispersive size distribution. The number concentration of ice crystals is

assumed to be given by the concentration of ice nuclei active at temperature T

(e.g., Fletcher, 1962):

109 T < 230.95,
= BIC exp[0.6 (TM - T)]) for TM'Z T > 230.95,
0 T>T (33)

M’

where Nre 1s the number of ice crystals m-3, and BIC is a constant usually

3 is assumed.

taken as 10—2 m-3. An arbitrary upper limit of 109 crystals m
No ice crystal processes occur (except for instantaneous melting) at

temperatures above 273.16 K.
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Ice crystal initiation

Following Rutledge and Hobbs (1983), the ice crystal process is initiated
by assuming the immediate presence of small ice crystals having an initial
diameter of 12.9 pm, whenever the air 1is saturated with respect to ice. The
rate of production of ice crystals is computed at temperatures less than
268.16 K and is given by
1

PICWV] = ~— MIN [10~

2
X na/pgs Al (34)

s

where
2 2.-1
= - + .
xs (Qv Qsi)[l Qsi Ls/Cp Rv T
The saturation mixing ratio with respect to ice is
Qsi = st (Qv + e)/p, (35)

where egq is the vapor pressure with respect to ice.

The lesser of the two rates in Eq. (34) is chosen so as to guarantee that
the computed growth of the ice crystals will not exceed the vapor available
for growth. The latter rate has been replaced by a more exact formulation
than that assumed by Rutledge and Hobbs. The new formulation accounts for the

implicit adjustment of the saturation mixing ratio (see Appendix D).

Deposition and sublimation of 1ice crystals

The mass rate of change due to the depositional growth of an ice particle

*

*
(e.g., Pruppacher and Klett, 1978) is (where A1 and Bl are expressed in terms
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of the reference environment)

* *
dM/dt = cre, - Qsi]FI/[QsiAl + B 13 (36)
where,
L L
* = v s - - * - —1
A]. - krT (R T 1)) and Bl - (poDw) b
o] v O

where kT is the thermal conductivity of air and D, is the diffusivity of water
vapor in air.

For a small hexagonal plate-like ice crystal the capacitance coefficient
C is 4 BiC; the ventilation factor is assumed unity (FI = 1); and the mean
ice crystal mass is QIC po/nIC (e.g., Rutledge and Hobbs, 1983).
Substitution into Eq. (36) ylelds

— * *
PL= 4 npe Dy 10,70 ,1/p [Q,, A + BT,

where the mean diameter of the hexagonal plate-like ice crystals is given by

Rutledge and Hobbs as
— 0.5
DId’ 16.3 [QIC po/nIC] . (37)
If supersaturation with respect to ice exists (i.e., QV > Qsi) then

PICWV2 = MIN [P1; xs/At], (38a)

or if subsaturation exists (1.e., QV < Qsi) then
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PICWV2 = MAX [PL, - Q../At, A_/At]; (38b)

The smaller of the two arguments are taken as the rate in (38a) so as to
guarantee that the computed growth of ice crystals by deposition does not
exceed the vapor available for growth. Similarly in (38b), the greater of the
three arguments are taken so as to guarantee the computed sublimation rate
does not exceed the vapor deficit, nor exceed the amount of ice crystal water

available.

Growth of ice crystals due to riming

The fall velocities of ice crystals and cloud droplets are very small and
can be ignored in many cloud processes. However, the difference in the fall
speeds between cloud droplets and ice crystals is important when ice crystal
growth due to the accretion of supercooled cloud droplets is considered (i.e.,
riming). The growth equation due to riming for an ice crystal (Orville and

Kopp, 1977) is

dM nDiC
——= (AV) E

—d—€= Y QCD 3 (38)

1CCD?

where AV is the difference in terminal velocity of the ice crystals and cloud
droplets, and E;qcp is the collection efficlency of ice crystals collecting
supercooled cloud droplets. From the above equation, the rate of production

due to riming is

® =2
PICCDL = = D o Qp "rc (AV) Eroep (39
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The collection efficiency is assumed zero if the cloud droplet radius,

is less than 6 x 10—6 m, or if the ice crystal diameter D__ is less than

Tepe 1C

150 x 10_6 m; otherwise, a collection efficiency of 0.5 is assumed. These
values assumed for Eycep Were derived from the data presented in Pitter
(1977). His theoretical results showed that collection between cloud droplets
and ice crystal plates would not occur if the radius of the droplets are less

than 6 um, or if the plate diameters are less than 150 um.

Melting of ice crystals

In regions where T > 273.16 K ice crystals are instantaneously melted
into cloud droplet water, hence the rate of production of ice crystals due to
melting is

PICCD2 = - QIC/At.

Spontaneous freezing of cloud droplets

Spontaneous freezing of cloud drops occur if T < 233.16 K ; that is

PICCD3 = QCD/At.

Autoconversion of cloud droplets into rain

In nature, slowly falling cloud droplets often collect other cloud
droplets; and by this process, may eventually grow into raindrops. The
parameterization of this process, which results in the conversion of cloud
droplet water into rainwater, is called the autoconversion of rainwater
processes. Kessler (1969) hypothesized an autoconversion rate which was

initiated when the cloud droplet water exceeded a certain threshold value.
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Other formulations developed by Berry (1968), Simpson and Wiggert (1969), and
Berry and Reinhardt (1974b) are more elaborate than the Kessler formulation,
since they are based on data obtained from detailed stochastic growth
models. The Berry-Reinhardt formulation should be superior to the Berry
formulation since the former is based on more recent experiments which utilize
an improved numerical treatment.

The Berry-Reinhardt formulation is assumed here; it is determined from

the expression for the average autoconversion rate as (Pruppacher and Klett,

1978)

PRCD1 = L2/T2 if Lz > 0, and T2 > 0; (40)

where from Berry and Reinhardt (1974a, 1974b), L, and T, are

3

L, = 0.027 [100 r' Top ~ 0-4] Qs (41)

T. = 3.72 [r' - 7.5] " y~ L 42

2 . [r * ] (pOQCD ] ( )
and

! = 106(0/0.38)1/3 ;ED' (43)

These parameters are based on the evolution of a bimodal droplet spectrum from
an initially unimodal (gamma) droplet size distribution; specifically, r' 1is a
droplet radius parameter, T, represents the time required (in seconds) for the

predominant radius of the larger mode4 to reach 50 um, and L, 1is the liquid

4The mode which has the larger sized droplets.
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water content (g g-l) at time T, associated with the larger mode.
Autoconversion is not computed unless both L2 and T2 exceed their threshold
values.

Threshold values of cloud droplet water needed before autoconversion can
take place, as based on Eqs. (40) - (43), are given in Table 1. According to
this formulation autoconversion is unlikely in extreme continental conditions;
rain, if it does occur, must be initiated by the Bergeron process. This is
supported by observations in continental areas such as the High Plains, which
typically find that rain is initiated by the melting of snow, graupel, and
hail (e.g., Dye et al., 1974; Cannon et al., 1974; Knight et al., 1974;
Heymsfield, 1982). On the other hand, in maritime clouds, the autoconversion
of rain from cloud droplet water is important, 1f not essential, for rain
formation. For example, "warm” rain clouds (convective rain clouds whose tops
never penetrate above the melting level) are often found within maritime
regions. Autoconversion of rain from cloud droplet water is the only process
by which rain can be initiated in "warm" clouds. Note from Table 1 that the
threshold for autoconversion is very small in maritime conditions. Also from
Table 1, it 1s interesting to note that the value assumed by Kessler (1969)
for the threshold of autoconversion (0.5 g m_3) corresponds to typical values

of e and o.

Collection of cloud droplets by rain

The growth rate of a single raindrop due to the collection of small cloud
droplets along its path is determined from the continuous collection equation

(e.g., Liu and Orville, 1969); i.e.,

nDZ
M R
it - Po %p "ROR) 7 Egepe
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TABLE 1. THRESHOLD CLOUD DROPLET WATER CONTENT NEEDED FOR AUTOCONVERSION

TO RAIN
Threshold C%oud Droplet
Water (g m °) nop o Location & Reference
[Derived from Egs. 3 [Dispersion
(40) - (43)] [#/cm”] Coefficlent]
0.1 50 0.366 Maritime - Simpson &
Wiggert (1969)
0.5 200 0.30
1.5 - 2.1 689 - 927 0.35 - 0.38 Upwind of St. Louls -
Fitzgerald & Spyers-—
Duran (1973)
2.8 - 3.7 1157 ~ 1472 0.30 - 0.32 Downwind of St. Louis -
Fitzgerald & Spyers-
Duran (1973)
9.2 2000 0.146 Extreme Continental -
Simpson & Wiggert (1969)
1.8 - 17.7 760 - 3166 0.12 - 0.32 Colorado High Plains -
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Following Liu and Orville the integration of the above equation over all drop
sizes with N(DR) drops as defined in Eq. (17) and WR(DR) as defined in Eq.
(24b); gives
307 3 - =

PRCD2 36 AR QCD WR NOR ERCD. (44)

The mean collection efficlency of raindrops accreting cloud droplets
(E£CD) is determined from a least-square curve fit of experimental data that
is tabulated in Mason (1971). The formulation, which is based on a constant

raindrop radius of 1000 pm, is given as

- — 6 —
Eeep(Top) = = 0-27544 + 0.26249 x 10° T

CD
- 1.8896 x 10:° .24 4.4626 x 10 T 3

o g (45)

which 1s computed for: 1.2 x 10~ °

S-FED <20 x 10—6. The collection efficiency
is set equal to unity, if the mean cloud droplet radius as determined by Eq.
(32) exceeds 20 x 106 m (20 um); 1if, on the other hand, the cloud droplet
radius is less than 1.2 x 10_6 m (1.2 pm), accretion of cloud droplets by

raindrops is not allowed.

Evaporation of raindrops

Evaporation of raindrops is computed whenever the alr is subsaturated and
there i{s an insufficifent amount of cloud droplet water to erase the
subsaturation. From Mason (1971) the rate of evaporation of a raindrop having

mass M 1is
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2T MR Q, - %,) Fg
de Lv st Lv 1

(rm = 1) + =—
kT T Rv T pr

The ventilation factor for raindrops is given by Ranz and Marshall (1952)
as
1/3 _ 0.5

Po= 1+ 038, R,

where the Reynolds number 1is defined:
Re = wR(DR) DR/vm,

where Vo {s the molecular viscosity of air.
With Eqs. (17), (24b) and (25b), integration over the drop size spectrum

gives a production term for the ralndrop evaporation as

— 0.
"RV’ )

* *
QSV [A2 /T - A3 ]+ T/Dw

2 1/3
T(Q,-Q,,} A [1 + 0-3179 Sy A

PRWVL = 21N o s (46)

where

*x 2 * _
A, = p, L /R kg ,and A, =p, L [k

The evaporation rate may not exceed the amount of rain available; 1.e.,

PRWV1 = MAX [PRWV1, - Qp/At].
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Conversion of 1ice crystals to snow

Following Rutledge and Hobbs (1983), the conversion of ice crystals to
snow is computed whenever the ice crystal mass exceeds 9.4 x 10—10 kg. Hence
from Eq. (37), the transfer of ice crystal water to snow occurs at a rate

which maintains a maximum average ice crystal diameter of 500 um; i.e.,

PSICI = (QIC - a)/At, (47)

10

where the conversion threshold {s: g = 9.4 x 10~ nIC/po.

Collection of cloud droplets by snow

The production of snow due to the accretion of cloud droplets is
parameterized in the same manner as the collection of cloud droplets by
rain. The terminal velocity for snow [Eq. (26)] is assumed to be independent

of diameter; this leads to an accretion rate given by

3

Py = 0.5 Nyg Q Ag WgEgor - (48)

If the temperature is less than 273.16 K the accreted cloud water (P2) is

converted into snow:

PSCDL = P,. (49)

If the temperature is greater than 273.16 K the collected cloud water is

trangsferred to rain:

PRCD3 = P_. (50)
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The collection efficiency of snow for cloud droplets ESCD’ is assumed

unity (e.g., Lin et. al., 1983).

Collection of rain by snow

1f the temperature 1s less than 273.16 K, snow grows by the accretion of
rain. The rate at which snow accretes rainwater is

@ o

P3=/S [ E
o o

T 3

n 2
7 (DgrDg)” Wp(Dg) %46 r

RS & N(Dp) N (Dg) dDpdDg,

where Wp >> Wy is assumed. Integration after substituting Eqs. (17), (18) and

(24b) yields:

P3 = 0.5 ™ Nog Qp WR Ag13.92 A§+ 4.8 Aphg + Ag]ERS. (51)
Snow is produced from the accretion of rain only if T £ 273.16 K:

PSR1 = P3 if TLT,.

- M

The collection efficiency of snow for rain Epgs 18 assumed unity (e.g-,

Lin et al., 1983; Rutledge and Hobbs, 1984).

Collection of ice crystals by snow

The production of snow due to the accretion of ice crystals 1s
parameterized in the same manner as the collection of cloud droplets by
snow. Ice crystals which only occur at temperatures less than 273.16 K are

accreted at a rate given by
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3

PSICZ = 0.5 7 Nj¢ Q¢ Ag ¥g Egpe- (52)
The collection efficiency of snow for ice crystals is assumed:
Egrc(T) = exp[0.38(T—TM)]. (53)

Eq. (53) is based on experimentally determined efficiencies that are presented
in Pruppacher and Klett (1978). Note that ice crystals are less likely to

stick to snow particles at lower temperatures.

Autoconversion of ice crystal water into snow

Ice crystals may grow into snow particles by processes of deposition of
vapor and accretion of cloud droplets. The initiation of snow due to these
processes are parameterized in Eq. (47). Snow may also form due to the
collision and aggregation of ice crystals. Following Lin et al. (1983), this
process is parameterized by an autoconversion formula as,

.3 a3
PSIC3 = 10 (QIC 10 /po) E (54)

s1C’

which is computed whenever poQIC exceeds 10"3 kg m—3.

Melting of snow

The formulation for melting of ice particles is discussed in Wisner et
al. (1972). The formulation assumes that the heat required for melting is
supplied by the following processes: (1) the conduction of heat from the air,
(2) the transfer of latent heat due to condensation of water vapor on the

surface of the ice particle, and (3) the heat supplied by the collection of
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rain and cloud droplets. The parameterization for the melting of snow
utilizes Egs. (18), (26), (48), (51) and (55), and follows Lin et al.
(1983). The melting of snow results in the production of rain, and is only

computed when T > TM’ The rate of melting is

ZnNOS

poLf

_ ~ _ 2
PSR2 = [kT(T TM) + LVpro(Qv stv)] Ag

1/3

0.5
x [0.86 + 0.28 5./ (aW AL /v ) "]

c (T-T

)
T M (PSRl + P2] - PSR1; (55)

where Q 1{s the saturation vapor mixing ratio (with respect to liquid water)

sSV

at the surface of the snow particle; i.e.,

Q = esv(TM) [Qv + ¢]/P. (56)

SsSV

The melting rate may not exceed the amount of snow available, i.e.,

PSR2 = MAX [PSR2, - QSN/At].

The last term in Eq. (55) is based on the requirement that raindrops be
shed at the same rate that they are collected. The net effect of raindrop

collection by melting snow particles is to further enhance the melting rate.

Growth of snow by deposition and gsublimation

The depositional growth of a spherical snow particle is given by Eq. (36)

where C is equal to ZnDS, and with the ventilation factor for snow is given
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as (Hall and Pruppacher, 1976)

Fo = 0.86 + 0.28 s;/3 Re?"°, (57)

where Re is now WSDS/vm.
Multiplying Eq. (36) by (18) and integrating over all particle sizes with

WS defined in (26) yields

2 1/3 0.5
2 m NoAS[Q -Q_ 1{0.86 + 0.21 Sy (® WoAg/v ) )

P4 = (58)

A* . *
po[Qsi 1 BI]

Similar to the formulation of Egs. (38a) and (38b), the rate of

production of snow by deposition is

PSWV1 = MIN [P4, KS/At] if Qv z-Qsi;
the rate of production due to sublimation is

PSWV1 = MAX [P4, - QSN/At, AS/At] if QV S-Qsi'

Deposition and sublimation of snow are not computed if melting is taking

place; 1i.e.,
PSWV1 = 0 if PSR2 < 0.

Condensation and evaporation of wet snow

Condensation or evaporation of snow is assumed to occur only during

melting. Evaporation may take place whenever snow particles melt in air that
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i{s below liquid water saturation. Formulation of the process assumes: (1)
melting and accretion produces a liquid surface completely surrounding the
particle; and (2) the temperature of the 1iquid surface is in equilibrium with
the snow particle. Hence, evaporation occurs if the vapor pressure of the air
is less than the saturation vapor pressure at 273.16 K; otherwise, water vapor
is condensed onto the wet snow particle.

The growth rate of a wet particle where the 1iquid is in thermal

equilibrium with ice is
ac - 2 m Dgp (Qv - stv) DSFS' (39)
Multiplying by Eq. (18) and integrating over all sizes yields

2
P5=12m NOSDw(Qv - stv) AS

x [0.86 + 0.21 s;”

0.5
(n WSAS/vm) 1. (60)
The rate of condensation or evaporation is only computed when melting is
occurring; i.e., PSR2 < O.
If Q, < Qggys then evaporation from the wet snow results in the

production of water vapor:
PRWV2 = MAX [P5, - P6];

where P6 = PRCD3 - PSR2 + P3.
The above formulation limits the rate of evaporation to the amount of
liquid water available from melting and accretion. In other words, the rate

of evaporation cannot exceed the rate which liquid water is produced on the
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snow particle.
On the other hand, if condensation of vapor takes place on the snow
particles, then the condensed water is converted (at the same rate) into rain

water:

PRWV2 = PS5,

Note that for a sufficiently moist atmosphere, rain due to melting snow

may consist partly of water actually melted from a snow particle, and partly

of water that was condensed onto the snow particle.

Spontaneous freezing of raindrops

The parameterization of the spontaneous freezing of supercooled raindrops
follows Wisner et al. (1972). This process is included in the TASS
formulation, even though Lin et al. (1983) has found this process to be
secondary to drop freezing due to ice crystal collection. The formulation is

based on the probability function developed by Bigg (1953) from laboratory

experiments:
PF = 1 - exp[- al(nD;/6) t GF(T)]; (61)
where
0 if T > 269.16,
Gp(T) =
exp[az(TM-T)] -1 1f T < 269.16.

The constants *y and a, are based on experimental data; the values assumed

here are taken from Wisner et al. as
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a, = 100 n’s™!, and o, = 0.66 k7L,

From Eq. (6l), Wisner et al. obtained an equation for the number of drops

frozen per unit volume, N(DR), as

_ aN(D)

3
T = nalN(DR) DR GF(T)/6.

(62)

The formulation of Eq. (62) is based on the assumption that the number of

drops frozen is small compared to the total number of drops within a unit

volume.

The production rate at which raindrops freeze per unit volume can be

obtained from eq. (62) as

_ 4N

L7 )
P7 o S T R M(Dy) dDg.

o]

Substitution of Eqs. (17) and integrating ylelds

3
P7 = 20n ay QR AR GF(T).

(63)

In the application of Eq. (63), a maximum of 25% of the available rainwater is

allowed to freeze per time step. This arbitrary upper 1imit should be

applied, since the development of Eq. (63) 1is based on the assumption that

only a small portion of the number of drops per unit volume actually freeze.

1f QR.Z 10-4 g g-l, then hail is produced from the freezing of

raindrops:

PHRL = MIN [P7, Qg/4 At].
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Raindrops associated with water contents less than 10~% g g—1 are assumed to

be too small to classify as hail when frozen, and instead are converted to

snow. Hence, 1if Qr < 10-4 & 8 » snow is produced by the freezing of rain:
PSR3 = MIN [P7, QR/4 At]. (64b)

Raindrop freezing due to collection of ice crystals

The collection of ice erystals by supercooled raindrops results in the
production of either hail or snow. Raindrop freezing due to this process
usually dominates over spontaneous drop freezing (Lin et al., 1983).

Following Lin et al., if Qr exceeds 10_4 g g_l, the collection of ice
crystals by rain results in the production of hail. Since the collection of
an 1ce crystal by a raindrop results in both particles changing to hail, two
production terms are needed: the transfer of rainwater to hail due the
collection of ice crystals, PHR2, and the transfer of ice crystal water to
hail due to the collection of ice crystals by raindrops, PHICl. If QR is less
than 10 -4 g g 1, the collection of ice crystals by rain results in both the
transfer of ice crystal water to snow and rainwater to snow.

Assuming the continuous collection equation, the rate of collection of

lce crystal water by raindrops is

151
P8 = =3 % R Uc Yr Nor Eric* (65)

The rate at which rainwater is transformed to hail or snow due to the
collection of ice crystals is (assuming the hydrometeors are uniformly

distributed throughout the grid volume)
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1 © T .2 3
P9 = 5; fo ERIC Z—DR WR(DR) 5w E-DR ne N(DR) dDR’ (66)

which becomes,

P9 = 6.96 = n A2

IC "R QR wR E

RIC’ (67)

Thus 1f Qg > 107 g ™!, then PHICL = P8, and PHRZ = P9; 1f Qg < 1074 g g1,

then PSIC4 = P8, and PSR4 = P9.
As in Lin et al. (1983), the collection efficiency of supercooled rain

for ice crystals ERIC’ is assumed unity.

Freezing of supercooled raindrops resulting from the collection of snow

If the temperature is less than 273.16 K and the raln water content
exceeds 1072 g g—l, hail 1s produced by the raindrop collection of snow
particles. Again the process requires two production terms.

The production rate of hail from rain collecting snow can be determined

from the rate at which snow accretes rainwater. Hence from Eq. (51),
PHS1 = PSRL if T < T, and Qg > 107%.

The rate at which rainwater accretes snow is

1 =7 T 2 % .3
PHS2 5. fo fo Eps 7 (PgtDg)” Wa(Pp) b 7 Dg N(Dg) N(Dg) D dD.

Substituting Egs. (17), (18) and (24B), and integrating yields:

157 = 2 2
PHS2 = 53— Nop Qy r Ag [250 AS/63 + 20 ARAS/7 + ARl Epgs (68)
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which is only computed when

T < 273.16 K, and Q > 1074 g g7 L.

Production of hail from the riming of snow

The riming of large snow particles, especially in regions of large cloud-
droplet concentrations, may lead to the initiation of hail.

Price (1985) and Price et al. (1986) assume that the conversion of hail
from the riming of snow occurs when snow contents, exceeding 0.1 g kg_l, are
in coexistence with supercooled cloud-droplet concentrations of 1 g kg"1 or
more. If these threshold conditions are met, they assume that the snow mass
converted to hail, per time step, is equal to the mass of the snow particles
greater than some diameter, D, The derivation of this formulation assumes a
continuous size distribution of snow particles; thus with Eq. 18, the mass of

snow (per mass of dry air) of snow particles greater than D is
3
Mo =Ny S J'D Dy exp(DS/AS)dDS.
o

Price (1985) and Price et al. (1986) obtain a production rate by integrating

the above equation and dividing by the time step and density of air:

Q D
PHS3 = ——g—N—— exp(- —°)[Di + 3 Di A+ 6 DOAE + 6 Ag]. (69a)
6AS At AS

In order to increase computational efficiency, a least-square curve fit

is formulated from Eq. (69a) as
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4

0 if  fig <3.5% 10 °,
[-2.31 x 102 + 114 hy =6.05 x 10° A; +8.59 x 10° Ag]
U 4 4
PHS3 = 1f 3.5%x 10 0 <A< 7.5 x 107,

[-0.35 + 445 AS + 2.95 x 105 Aé - 1.21 x 108 AZ]

if 7.5 x 107 <hg 2.0 x 10'3,
0.75 1E AL >2x107°, (69b)
L_ S
where D in (69a) is assumed to have a value of 5 x 1073 mw. PHS3 is only
ted if T < T >10 2 g g, and Q> 1074 g g7t
compute M QCD 2 gg , an SN g8 .

Collection by hail of ice crystals

The production rate for hail due to ice crystal collection is determined
from the continuous collection equation when T is less than 273.16 K. The
parameterization follows Lin et. al. (1983) and is formulated in a similar
manner as PRCD3 in Eq. (44). The production rate for hail collecting cloud

ice is

PHIC2 =3—“ W, E._ . (70)
During hail dry growth the collection efficiency for hail collecting ice
crystals is Ey;c = 0.3, which is based on the experimental data of Latham and

Saunders (1970). 1In the case of hail wet growth, Ey;. 1s set to unity.

Collection by hail of cloud droplets

The production rate for hail due to cloud droplet collection 1is
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determined from the continuous collection equation, and is formulated in a

similar manner as PRCD2 in Eq. (44); the production rate is (Lin et. al.,

1983),

_ 37 3o %
PHCDL = 3= Ny, Q. A Wy Egep (71)

The mean collection efficiency for hail collecting cloud drops, is

Excps
based on Langmuir”s (1948) theoretical efficiency for potential flow; it is

given by

= o 2
Eyep = [Ky/(K, +0.5)]%. (72)

The Stokes number (e.g., Byers, 1965) is:
K =68 4w, r2/9u . (73)
s w H CD D 'H

where Hp is the dynamic viscosity of air. The mean Stokes number is defined
from Ks by substituting the mean mass-weighted terminal velocity [Eq. (28)]

and the mean mass-weighted hail diameter [ﬁﬁ = 4AH] into Eq. (73); the mean

Stokes number is given as

K =36 /9

s w "y CD Hp Age

Collection by hail of rain

The rate at which rainwater is collected by hail is (Wisner et al., 1972)

1 o op 2\ _
PHR3 - 'ﬁ 1; g (DR+DH) IwH wRI 5 N(D YN(D )dDRdDHEHR (74)

©
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Following Wisner et al., integration of Eq. (74) 1s possible if differences in

terminal velocitles are approximated by

- | = 7, - le,

where WR and WH are respectively given by Eqs. (25a) and (28). Substitution

of Eqs. (17) and (19) into (74) and integrating gives

S 2 2
PHR3 = 0.5 N, W | Qphy 110 Ag + 4 Aphy + Ayl Byp. (75)

The efficiency of hail for rain, Eyp, is assumed unity (e.g., Lin et al.,

1983).

Collection by hail of snow

The production rate for hail due to snow particle collection is derived

similar to PHS2 in Eq. (68); it is given as
push = 3% N W Qe AL[16 A/3 + 16 A /5 + AX] E (76)
7 Nou Yu %N M4 S s al Pus
For hail dry growth the collection efficlency of hail for snow, EHS’ is
assumed equal to 0.1 (Lin et al., 1983); for hail wet growth and temperatures

greater than 273.16 K, Eyg 1s assumed unity.

Hail melting

The production rate for the melting of hail is developed similar to PSR1
in Eq. (55). The melting of hail results in the production of rain, and is

computed when the temperature is greater than 273.16 K. Following Lin et al.
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(1983), the rate at which hail melts is

2n N

OH 2
P10 = - p0 Lf [kT(T-TM) + Lvapo(Qv_stv)] AH

x [0.94 + 0.381 S;/3(ﬁﬁAH/vm)0'5]

€ (T-T))
- ———— [PHCD1 + PHR3]; (77)

L

where in the derivation of Eq. (77) the ventilation factor for hail {is assumed

as (Mason and Thorpe, 1966)

1/3 [1/2
FH 0.94 + 0.33 SM Re , (78)

and where now the Reynolds number is defined as Re = Wﬁ DH/vm

The rate of melting may not exceed the hail available and 1s only

computed if melting occurs:

P10 = MAX (P10, - Q/At],

P10 = MIN [P1O0, 0].
The rate at which hailwater is transferred to ralnwater 1is
PHR4 = P10 - PHCD1-~PHR3 (79)

The last two terms in Eq. (79) are due to the shedding of collected rain and

cloud droplet water.
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Hail wet growth

Hailstones grow by deposition and the accretion of 1liquid and solid
hydrometeors. Growth by accretion of cloud droplets and rain drops is usually
dominant and becomes more so as the hail diameter increases. Dry growth
occurs when the surface of the hailstone is at subfreezing temperatures and
the accreted liquid hydrometeors freeze quickly, leaving the surface
essentially dry. During wet growth, only a portion of the collected liquid
water freezes. Wet growth occurs because heat transfer to the surrounding air
{s insufficient to dissipate the excess heat that is released from the
freezing of accreted water. Thus, the surface temperature of the hailstone
rises to 0°C, and a portion of the accreted water is shed as rain. According
to Musil (1970) this process is modified when the hailstone also accretes ice
particles. Some of the excess heat contained by the hailstone can be absorbed
by the cooler 1ice particles; hence, the hailstone's capacity to freeze
accreted water is iIncreased.

Parameterization of the wet growth process 1s similar to the formulation
in Lin et al. (1983). First, a production term representing the maximum
capacity for growth from the accreted hydrometeors is computed (PWET). I1f the
rate of accreted liquid water exceeds PWET (the maximum growth rate), wet
growth 1s assumed to occur. The growth rate for hail is then given by PWET;
and the remaining portion of the accreted 1liquid water is shed as rain.
However, if PWET exceeds the rate at which liquid water 1s accreted, then dry
growth is assumed; and all of the accreted water is transferred into hail
water. This test for wet growth is only computed when the alr temperature is
between 253.16 K and 273.16 K. Only hail particles are assumed to have the
potential for wet growth; dry growth is always assumed for graupel particles

(i.e., when ﬁé <5x 10-3m).
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The growth equation for wet growth was formulated by Musil (1970) and is

similar to the production equation for melting. Assuming the ventilation

factor given by Eq. (78) and integrating over all particle sizes yields,

ZﬂNOH 9

PWET = - Py Lf [kT(T-TM) + Lvapo(Qv—stv)] AH

x [0.94 + 0.381 S;/3(ﬁhAH/vm)0'5]

¢, (T-T,)
+ (1 - ——— (PHIC2/E + PHS4/E, ); (80)
“f

which is only computed if 273.16 > T > 253.16 K, and ﬁb > 5 x 10-3.

Wet growth occurs if:
PWET < PHCD1 + PHR3;
in which case,
PHR5 = PWET - PHCD1 ~ PHR3,

where PHR5 represents the rate at which accreted water is shed as rain.

Dry growth occurs if:
PWET 2.PHCD1 + PHR3;
in which case

PHRS = 0,
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and all accreted water is consumed by the growing hail.

Condensation and evaporation of wet hail

The hailstone is assumed to be covered by a film of water whenever
melting or wet growth occurs. The temperature of the liquid surface is
assumed to be in equilibrium with the ice surface; thus, condensation on the
hailstone occurs if vapor pressure of the air exceeds the saturation vapor
pressure (for liquid water) at 273.16 K. 1In which case, water vapor condensed
on the hailstone is transferred to rainwater. Evaporation, on the other hand,
occurs if the vapor pressure at 273.16 K exceeds that of the air; in this case
melt- and shed-water (which would otherwise become rain) are transferred to
water vapor.

Similar to Eq. (60) the rate of condensation on wet hail is

2

Pil = 27 NOH Dw(Qv_stv) AH

1/3

x [0.94 + 0.381 S (W A /Y )0'5]; (81)

HH m

which is only computed when the hail or graupel particles are "wet”; i.e.,
when either PHR4 or PHR5 are less than zero; otherwise, P11 is set equal to
zero.

Condensation on the hailstones occurs if Q, > stv: the water condensed
on the hail is tranferred to rainwater;

PRWV3 = P1l1.

Evaporation from the wet hail takes place if Q < Qggys
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PRWV3 = MAX [P1l, - P12], (82)

where the rate at which liquid water is available for evaporation is

P12 = - PHR4 - PHR5

By choosing the maximum of the two rates in Eq. (81), evaporation from the wet

hail cannot exceed the rate at which excess 1iquid water is collected and/or

melted. 1In other words, evaporation occurs as long as the hailstones are wet .

Growth of hail by deposition and sublimation

The production rate of hail due to deposition is formulated similar to

Eq. (58); and is given by

2 1/3 = 0.5
21 NolQ,~Qg, 1A5[0.94 + 0.381 s, Ty /v )]

PHWV1 = . (83)

AY + BF
PolQqy &) + Byl

Deposition (or sublimation) is not computed if the hail surface is wet; i.e.,

PHWV1 = 0O if PRWV3 - PHR4 - PHR5 < 0.

Evaporation from wet ground

The rate of evaporation from the ground is computed as a source term in
the water vapor and thermodynamic equations. The formulation is a crude
approximation and assumes the ground surface, when it is wet, to be covered by
a layer of liquid water.

The flux of vapor to the air from the wet ground is given by
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S TR PR
where A is the surface area covered by water, M is the mass of water involved
in the exchange, K is the eddy-diffusion coefficient for water vapor, and
F% is vapor density.

If e Q, Ax Dy Az is substituted for M, and the gradient is approximated
as dpv/dz = [Dv(h) - st(h)]/h, then the production rate of Q, due to surface

evaporation is

dt 9 h2

LS (0 7 Q)

(84)
where 8 1is an empirical constant and h = Azf2. In the absence of
observations, the value of § 1is assumed unity.

The rate of ground evaporation is computed in the grid cells adjacent to
the ground, and is only calculated if the ground is assumed wet. For a domain
that is assumed stationary with respect to ground, the accumulated rainfall
must locally exceed one millimeter before ground evaporation is computed. If
the domain is moving (e.g., translating with a convective storm), then PWVG is

computed locally, only when the rainfall rate exceeds 25 millimeters per hour.

Source Terms for the Thermodynamic and

Moisture Substance Equation

The source terms for various microphysical interaction are formally

listed below.5

5Actual computation is not as simple as summing all of the source terms for
each prognostic equation. Details of the computational procedure are given in
Section 6.
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Thermodynamic equation

The source terms for the rate of diabatic heating which are used 1in Eq.

(5) are:

w
]

PCDWV1 + PRWV1 + PRWV2 + PRWV3 - PWVG

w
1]

PICCD1 + PICCD2 + PICCD3 + PSRl + PSR2 + PSR3 + PSR4 + PHCD! + PHR1
+ PHR3 + PHR4 + PHRS

wn
L]

PICWV1 + PICWV2 + PSWV1 + PHWV1.

Molsture substance equations

The source terms in Eqs. (6) - (11) are as follows:

for water vapor

S,ap = ~ PCDWV1 - PICWV1 - PICWV2 - PRWV1 - PRWV2 - PRWV3 - PSWV1
vap - PHWV1 + PWVG;

for cloud droplet water

Scp = PCDWVL - PICCDL - PICCD2 - PICCD3 - PRCD1 - PRCD2 — PRCD3
- PSCD1 - PHCD1;

for ice crystal water
SIC = PICWV1 + PICWV2 + PICCD1 + PICCD2 + PICCD3 - PSICl - PSIC2

- PSIC3 - PSIC4 - PHICl - PHIC2;

for rain water
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SR.= PRWV1 + PRWV2 + PRWV3 + PRCD1 + PRCD2 + PRCD3 - PSRl - PSR2
- PSR3 - PSR4 - PHR1 - PHR2 - PHR3 - PHR4 - PHR5;

for snow water

SS = PSWV1 + PSCD1 + PSICLl + PSIC2 + PSIC3 + PSIC4 + PSRl
+ PSR2 + PSR3 + PSR4 - PHS1 - PHS2 - PHS3 - PHS4;

and for hail water

SH,= PHWV1 + PHCDLl + PHIC1 + PHIC2 + PHR1 + PHR2 + PHR3 + PHR4 + PHRS
+ PHS1 + PHS2 + PHS3.

Diagnostic Calculation of Radar Reflectivity

Radar reflectivity fields can be diagnosed from the simulated moisture
substance filelds, since specific size distributions have been assumed. The
simulated radar-reflectivity fields are useful in the analysis of model
results; and most important, they can be used to compare and validate the
model results with actual radar observations.

The model radar reflectivity filelds are diagnosed from the rain, snow,
and hail fields. The cloud droplet and ice crystal fields, which are composed
of relatively small particles, contribute very little to the radar
reflectivity and can be neglected in most applications.

For rain the radar reflectivity factor is determined by assuming Rayleigh

scattering:

@

=/ N(Dp) Dg dD - (85)

(o)

2R

Integration after substitution of Eq. (17) into (85), gives
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20 7 6 -3
ZR.= 7.2 x 10 NOR AR [mm~ m 7). (86)

For dry snow, the equivalent radar reflectivity factor must be assumed;

i.e.,
2 .2
Kel™ 85 = 6 . .
ZspRy = 7 3/ N0y Dg dbg;
[Kw[ & )
w

substitution of Eq. (18) and integrating gives,

2 2
LTI -
20 71l % 7 (m® 03] 87y

7.2 x 1077 ——_
[KW,Z 5 0s °S

Zspry = 2
w
For wavelengths employed in weather radars, and for temperatures typical of
meteorological problems, the dielectric factor for water, [lez, is 0.93, and
the dielectric factor for ice, [KIlz » 1s 0.21 (Rogers, 1976). The specific
density of snow is incorporated into Eq. (87) in order to ad just the snow
particle diameter to its melted diameter (e.g., Battan, 1973).

For wet snow the radar reflectivity factor 1is simply

20 7 6 -3

ZSWET = 7.2 x 10 NbS AS [mm™ m 7). (88)

In the case of dry hail, the radar reflectivity factor is calculated in
the same manner as dry snow; i.e.,

52
—— N A [om® n”3). (89)
5
w

An empirical formulation for the radar reflectivity of wet hail which

includes the effects of Mie scattering has been determined by Smith et al.
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(1975) as

0.95
2 =72 %1020 8 Ay (mm® m3]. (90)

HWET OH "H

The final radar reflectivity is computed from the sum of the radar
reflectivity factors of rain, snow, and hail. The wet snow and hail radar
reflectivity factors are assumed up to the 0° C level. The wet hail radar
reflectivity factor is also assumed in the updrafts up to the -8% C level, if

Bb > 5 x 107 m.
Evaluation of Microphysical Constants

Several constants and variables need to be evaluated in order to solve
for the cloud microphysics. Many of the physical constants vary only slowly
with temperature and preséure; and thus, are defined in terms of variables
from the reference euvironment (see Appendix C). For example, physical
constants such as latent heat for vaporization of water (Lv)’ latent heat for
fusion of water (Lf), latent heat of sublimation of water (LS), specific heat
of water (Cw)’ specific heat of ice, (CI)’ dynamic viscosity of air (pD), and
thermal conductivity (kT) are evaluated as functions of the temperature of the
reference atmosphere (To). Other physical constants such as the molecular
viscosity of air (vm), the diffusivity of water vapor in air (Dw)’ and the
Schmidt number (SM) are defined in terms of temperature and pressure of the
reference atmosphere.

Variables such as saturation vapor pressure are more sensitive to small
changes and must be defined in terms of local variables. The expression for

deducing the local values of the saturation vapor pressure with respect to
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liquid water 1is obtained by integrating the Clausius-Clapeyron equation (e.g.,

Pruppacher and Klett, 1978) and expanding the exponent as

esv(T) = esvo(To) [1 + x + x2/2 + x3/3];

2
x = L [T-T /R T °. (91)

The saturation vapor pressure with respect to liquid water for the reference
environment (esvo) is accurately determined from an empirical relation

(Appendix D). Similarly, the saturation vapor pressure with respect to ice is

esi(T) = esio(To) [1+ x + x2/2 + x3/3];

2
x =L [T-T]/R T °. (92)

The solutions of the saturation vapor pressures from Eqs. (91) and (92) are
accurate for most meteorological problems. The computations of the local
values for the saturation vapor pressures are fast since no exponentials are
involved.

The local temperature, T, which is needed in Eqs. (91) and (92) 1is not a
working variable and must be diagnosed. Temperature may be evaluated from

pressure and potential temperature with Poisson's equation; i.e.,
T=6 (p/p )< (93)
Poo) >
where poo = 101325 pa and ¢« = R/Cp. A computationally efficient formulation

which avoids exponentiation can be obtained by a perturbation expansion of Eq.

(93) as
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T = ’1‘0 [e/eo - K p/Po]. (94)

The above approximation has reasonable accuracy for most meteorological

problems.
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5. INITIAL AND REFERENCE CONDITIONS

The reference environment is assumed unsaturated and steady state; its
values are derived from a vertical profile sounding -- representing the
hydrostatic environment to be modeled. Either aa actual rawinsonde sounding,
a composite of observed soundings, or a profile predicted by a reglonal
hydrostatic mode1® may be used. All reference values are a function of height
only.

The values for Uo’ Vo’ To, and Qvo are determined from the input
sounding, and are defined at each vertical level in the model by using a
spline interpolation. Once these values are determined, then the remaining

reference variables are computed; the reference pressure, P is obtained by

o)
i1ntegrating the hydrostatic equation; the reference density, Py is solved
from the equation of state; the reference potential temperature, 90, is

determined from Poisson's equation; and the remaining thermodynamic variables

are diagnosed using appropriate formulas (see Appendix E).

Basic Initial Field

The basic initial field is assumed to be hopizontally homogeneous and is
defined directly from the reference values; i.e., u(x,y,z,t=0) = Uo(z),
v(x,y¥,z,t=0) = Vo(z), w(x,y,z,t=0) = 0, p(x,y,z,t=0) = O, (X,¥,2,t=0) = 0(z)
and Qv(x,y,z,t=o) = Qvo(z). The remaining moisture substance fields (1.e.,

Qep» Qcs s Qg» and Qy) are specified as zero.

6Environmental soundings predicted by the Mesoscale Atmospheric Simulation
System (Kaplan et al., 1982) may be used to initialize TASS. An advantage of
a regional-scale model sounding is that it can be generated for almost any
location and time.
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The external forcing terms in Egqs. (2), (5) and (6) are defined such that
the basic initial field remains steady-state. Thus, the fields caanot depart
from their initial values unless a perturbation is added. The forcing terms

are defined as:

(au/at)* = [6113(t=o)/az]/po; (95)
@v/ot)" = [31,,(t=0)/021/p; (96)
@8/ot)" = [05(8,)/02]/p 5 and (97)
(dq /ot)" = [05(Q,)/32) /0, - (98)

Initial Perturbation Field

Numerical cloud modelers have devised various techniques in order to
trigger convection in their simulations. The most common technique 1is to
apply a moist or dry thermal perturbation. For example, Klemp and Wilhelmson
(1978a, 1978b) have assumed a 21.6 km diameter initial thermal impulse.
Although the scale is large and difficult to justify, its application did
promote the development of a realistic appearing storm within a reasonable
period of time. Other approaches for triggering the development of convective
storms are: a superimposed velocity and temperature impulse (Schlesinger,
1984a), a meso-gamma scale vortex (Proctor, 1983), a heating function (Miller,
1978), a cooling function (Tripoli and Cotton, 1982), a mesoscale forcing
function for velocity (Schlesinger, 1984b), random heating function (Hill,

19743 Yau and Michaud, 1982), aund topographic uplift due to an isolated
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mountain (Liu and Orville, 1969; Clark, 1979). Unfortunately all of the
approaches suffer from some arbritrariness and a lack of understanding of how
the mesoscale acts to force convection. Smolarkiewicz and Clark (1985) have
simulated a cumulus field, by including surface energy and moisture balance
equations, as well as nonhomogeneous terrain into their model. The simulated
clouds were initiated by the flow over irregular terrain and the nonuniform
ground heating. This approach for cumulus initiation is progressing in the
right direction; but it is not yet practical in many applications. Also,
mesoscale forcing may be more important than boundary layer forcing for
certain types of storm development.

In the TASS model convection can be initiated by superimposing a velocity
impulse and (or) a thermal impulse onto the basic initial field. The
formulation of the velocity impulse 1is modified from Schlesinger (1984a). It
assumes a cylindrical updraft of radius Rw and depth H,, and is consistent

with the anelastic equation for mass continuity; it is given by

u (t=o) = - 2—“— (x-x ) G dF/dz (99)
P o
. M A
v'(t=0) = - 7o (y-y ) G dF/dz (100)
fq o
ooexp(- ©/RD) (1- (/R )Y if  r <R
- p w w
w (t=0) = o
0 if r> R, (101)
where
/\2 2 A~
o exp (- r°/R ) if r <R,
G (r) =
2 ~2 ~
Rw exp (-1)/r if r> Rw’
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F(z) = 6.75 z (H_ - z)z/Hi,
P oy = - x )’ (v - y)Y,  and

M= P W .
o max
The maximum updraft speed, W, ., occurs at X, Yg» and z = Hw/3.
A thermal perturbation field may be added to the base state as

0

Taat 2 (1 - (B/Rg)Y - (22-26)?/2g); (102)
(o]

o (t=0) = MAX [0,T].

The thermal perturbation field is an ellipsoid with a maximum horizontal

radius Rg and a depth Zg. The maximum temperature perturbation, AT, occurs

at x,, y, and z = Ze/2.
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6. NUMERICAL PROCEDURE

Choice of Finite-Difference Approximations

Factors which influence the choice of finite~difference approximations
are accuracy, economy, and long-term stability. Conservative schemes should
be used, otherwise artificial generation of mass, momentum, vorticity, and
energy would obviously invalidate the solutions. Especially desirable are
schemes for space derivatives introduced by Arakawa (1966), which obey certain
integral constraints on quadratic quanities, such as kinetic energy. These
schemes are termed quadratic conservative or energy conservative, since when
applied to advection they conserve both the first and second statistical
moments of the dependent variable. These schemes are reasonably efficient and
are especially popular in long-term integrations since they retard if not
eliminate the development of nonlinear instability7. These numerical schemes,
however, only possess their quadratic-conservative properties in the absence
of time-differencing errors. An economical time differencing scheme which is
complimentary to the quadratic-conservative space differencing is the second-
order Adams-Bashforth method. Lilly (1965) has shown that the Adams~Bashforth
method does not artifically generate kinetic energy when used with quadratic-
conservative schemes; in addition, it has comparable accuracy, yet is more
efficient when compared to certain second~order iterative methods. The Adams-
Bashforth method also has comparable accuracy to the Leapfrog time-

differencing scheme without the problems of time splitting instability; also

7Aliasing errors due to the finite differencing of nonlinear terms may lead to
catostrophic rises in variances associated with the shortest resolvable
wavelengths (e.g., Haltiner and Williams, 1980.) This so-called nonlinear
instability cannot be eliminated by reducing the time step.
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the method is not numerically diffusive, as in the case of the first-order
upstream differencing scheme. Deardorff (1973), has found the Adams—-Bashforth
method to be more preferable in three-dimensional turbulent boundary layer
simulations than the popular Leapfrog scheme.

A significant reduction in the run time of a compressible formulation can
be achieved with the time-splitting integration procedure. This scheme has
been developed for cloud models by Klemp and Wilhelmson (1978a) and Cotton and
Tripoli (1978). The time-splitting procedure results in a substantial savings
in computer time, yet results in little loss of accuracy, when compared to
ordinary methods of compressible integration. In this scheme the higher
frequency terms given by the LHS of Eqs. (2) and (4) are integrated with a
time step compatible with the propagation of acoustic modes. The remaining
terms in Eqs. (2) and (4) along with (5) - (11) are integrated with longer
time steps which are appropriate for anelastic or incompressible flow.

In the TASS model the time-splitting integration procedure is used, and
local time derivatives are approximated by the second-order Adams-Bashforth
method. Space derivatives are approximated by second-order central
differences in quadratic-conservative form. Details of the numerical

formulation are given in the following sections.

Grid

The variables are arranged on a conventional staggered grid, often
referred to as the Arakawa C mesh (Haltiner and Williams, 1980). All
variables other than velocity are computed at a common point within the center
of each grid cell. At the midpoints of the faces of the grid cells, the

velocity component normal to the faées is computed. The grid arrangement
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allows the use of quadratic conservative schemes and has improved accuracy

over most other grid arrangements (e.g., Haltiner and Williams, 1980).

Vertical Stretching

A vertically stretched grid is obtained by continuously mapping the
actual vertical coordinate z into the stretched vertical coordinate z'. The

equations used for the transformation are the same as those used by Wilhelmson

and Chen (1982).

The vertical coordinate z is mapped into z' as

z = (C1 + sz')z'.

(103)

A constant grid interval Az' in z! space is determined from Eq. (103) as
2 0.5

Az = [-X + ([X° + ZT]/CZ) 1/7(NL + 2); (104)

where X = C1/2C2, z2p is the height of the domain, and NL is the number of

levels above the ground. The actual height of each grid point can be

determined from Eq. (103), where:

z?

(1-2) Az for wat I =1, 2,...,NL + 2
z

(I-3/2) Az for all other variables at I = 1,2,...,NL + 2,

The mapping factor G is determined as

G = dz'/dz = [c; +2 sz']-l; (105)
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the vertical derivatives can be transformed into z~ space as
- 2,,2 _ d d
d/dz = ¢ d/dz”, and d°/dz” = G rra (G E;:).

When grid stretching is applied the values typically assumed for constants Cy
and C, are 0.168 and 6.4 x 10_6 m, respectively. These values are taken from
Wilhelmson and Chen except that the value for C, is an order of magnitude
greater. This larger value for C, results in a more modest stretching;
resulting in approximately a factor of 5 increase in vertical grid size from
bottom to top. No stretching occurs (i.e., z = 2z7) with C; = 1 and Cy = 0.
gevere stretching (a large increase in grid size from top to bottom) is not
recommended with the current turbulence closure scheme.

The vertical stretching of the grid mesh gives increased vertical
resolution near the ground at the expense of resolution near the top of the
domain. A primary reason for including vertical stretching in a cloud model
is so that downdraft outflows and accompanying low-level features can be more

adequately simulated.
Finite Difference Equations

Time derivatives

A generalized form of the Adams-Bashforth time differencing, which allows
for a variable time step (Ochs, 1975) is employed in all large time-step

calculations as
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where the operator ¢(Q) is expressed as

At N At

N N 3Q N 5Q
¢ (Q = At [(1+5= ) (=) - X &)1, (106)
N 2hty .’ BE 2Bty Bt

where the subscript L refers to derivatives taken over the large time step.

The time levels are defined according to the following notation:

N = Qu,

QML = e + by,
and

N-1 _ _

Q = Q(t AtN_l).

The u component of velocity at small time level n+l is approximated as

At n n-1
ntl _ n N du,  _ ,du 1 N
Tt BGD -G 1 g, (107)

where there are m small time steps per large time step. Note that if
uN = un+2, then uN+1 = un+2+m. The subscript s signifies that the derivatives
are taken over the small time step.

Both the v and w components of velocity, as well as the pressure

deviation, are approximated in a similar fas<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>